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1. Introduction

2. Magnetostatic formulation

Under steady-state conditions (magnetostatics), Maxwell’s equations sim-
plify to:

∇ · B⃗ = 0 (1)

∇× H⃗ = J⃗ (2)

Assuming linear and isotropic materials, the constitutive relation is:

B⃗ = µH⃗ (3)

By introducing the magnetic vector potential A⃗ such that B⃗ = ∇ × A⃗
and assuming a 2D formulation with A⃗ = Az(x, y) e⃗z, we obtain:

B⃗ =

[
∂Az

∂y
, −∂Az

∂x

]
(4)
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Substituting Eq. (4) into Eq. (2), the governing equation becomes:

∇ ·
(
1

µ
∇Az

)
= −Jz (5)

If µ is constant, this equation reduces to:

∂2Az

∂x2
+

∂2Az

∂y2
= −µJz (6)

This equation is solved numerically using the Finite Element Method
(FEM), allowing the magnetic field B⃗ to be obtained from Az via Eq. (4).
The magnetic force acting on a region (e.g., the armature) is computed using
Maxwell’s stress tensor:

Fela,x =
1

µ0

∮
Γ

[(
B2

n −B2
t

)
nx + 2BnBtny

]
dl (7)

where Bn and Bt are the normal and tangential components of the mag-
netic field along the boundary Γ of the region of interest.

3. Thermal problem formulation

To model the thermal behavior of a system such as a solenoid carrying
electric current, we start from the conservation of energy applied to a control
volume.

3.1. Energy balance

Let Ω ⊂ R2 be a domain with boundary ∂Ω. The energy balance for a
control volume states:

Energy in - energy out + internal generation = stored energy change

In mathematical form:

∂

∂t

∫
Ω

ρcpT dV = −
∫
∂Ω

q⃗ · n⃗ dS +

∫
Ω

Qgen dV (8)

where:

• ρ is the density [kg/m3],

• cp is the specific heat capacity [J/(kg·K)],
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• T is the temperature [K],

• q⃗ is the heat flux vector [W/m2],

• Qgen is the volumetric heat generation [W/m3],

• n⃗ is the outward normal vector to the boundary.

Assuming steady-state conditions:

∂T

∂t
= 0 ⇒ ∂

∂t

∫
Ω

ρcpT dV = 0 (9)

3.2. Fourier’s law
Heat conduction is described by Fourier’s law:

q⃗ = −κ∇T (10)

Substituting into the energy balance:

0 = −
∫
∂Ω

(−κ∇T · n⃗) dS +

∫
Ω

Qgen dV (11)

Using the divergence theorem:∫
Ω

∇ · (κ∇T ) dV =

∫
Ω

Qgen dV (12)

Since this must hold for any Ω:

−∇ · (κ∇T ) = Qgen (13)

3.3. Convective heat exchange
Heat exchange with the surrounding environment (e.g., air around the

solenoid) is modeled using a Robin boundary condition. This convective
contribution can be treated in two ways:

1. As a boundary condition:

−κ∇T · n⃗ = h(T − Text) on ∂Ωh (14)

2. Or as a volumetric term (common in simplified 1D/2D models):

−∇ · (κ∇T ) = Qgen + h(Text − T ) (15)

This last form is an approximation, used when convection acts uniformly
over a surface and can be distributed as an equivalent volumetric term.
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3.4. Joule heating from electric current

When heat is generated by electrical current in the solenoid coils, the
volumetric source term is:

Qgen =
J2

σ
= ρJ2 (16)

where:

• J is the current density [A/m2],

• σ is the electrical conductivity [S/m],

• ρ is the electrical resistivity [Ω·m].

3.5. Final governing equation

The final steady-state thermal equation, including Joule heating and con-
vection, is:

−∇ · (κ∇T ) = ρJ2 + h(Text − T ) (17)

4. Design of magnetic actuators

4.1. Material models

Different material models are used depending on the type of optimization
(magnetic, thermal, or thermo-magnetic). All models rely on pseudo-density
design variables ρ (or p1, p2, p3 for multimaterial cases), which are continuous
during optimization and tend toward binary values after projection.

4.1.1. Magnetic optimization (single-material)

In magnetic-only problems, a SIMP model is used to interpolate the rel-
ative magnetic permeability of a ferromagnetic material:

µr(ρ) = µair + ρp(µferro − µair) (18)

No thermal properties are modeled in this case.
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4.1.2. Thermal optimization (single-material)

In thermal-only problems, the design variable ρ controls the thermal con-
ductivity κ via a SIMP interpolation model:

κ(ρ) = ε+ ρp(κferro − ε) (19)

h(ρ) = har(1− ρ) (20)

4.1.3. Thermo-magnetic optimization (single-material)

When both magnetic and thermal behaviors are considered simultane-
ously, the design variable ρ ∈ [0, 1] controls the interpolation of both mag-
netic and thermal properties using the SIMP model. The following expres-
sions are used:

µr(ρ) = µair + ρp(µferro − µair) (21)

κ(ρ) = ε+ ρp(κferro − ε) (22)

h(ρ) = har(1− ρ) (23)

4.1.4. Thermo-magnetic multimaterial optimization (discrete material selec-
tion)

In this case, three design variables p1, p2, and p3 are used to represent
four material options by activating different binary combinations, as shown
in the table below:

Discrete material mapping:. Each combination of the design variables (p1, p2, p3)
corresponds to a different physical material with its own magnetic and ther-
mal properties, as shown below:

The interpolated properties are defined via the following expressions,
constructed to activate the desired material based on the combination of
(p1, p2, p3):

Thermal conductivity:.

κ(p1, p2, p3) = ε+(200−ε)p2(1−p1)p3+(54−ε)p1(1−p2)+(200−ε)p1p2(1−p3)+(200−ε)p1p2p3
(24)

Convection coefficient:.

h(p1, p2, p3) = har [(1− p1)(1− p2) + (1− p2)p1p3 + (1− p1)p2p3] (25)
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p1 p2 p3 µr κ h Material

1 0 1 µferro 54 0 Iron

0 1 0 µair 200 0 Coil

1 1 1 µferro/2 200 0 Composite (XXX)

0 0 1 µair 0.0264 har Air

0 1 1 µair 0.0264 har Air

Table 1: Discrete material mapping used in the multimaterial thermo-magnetic optimiza-
tion.

Relative magnetic permeability:.

µr(p1, p2, p3) = µar + (µferro − µar) [p1(1− p2)p3 + 0.5p1p2p3] (26)

This approach enables the optimizer to autonomously choose among air,
iron, coil, and composite materials, balancing magnetic performance and heat
dissipation with high resolution.

4.2. Filtering and projection

To promote manufacturable and physically realistic designs, a density
filter and Heaviside projection are employed. The filtered variable p̃i is com-
puted as:

p̃i =

∑
j ∈ Niwijpj∑

j∈Ni
wij

, wij = max(0, rmin − |xi − xj|) (27)

The projection is then applied to promote binary solutions:

p̄i =
tanh(βη) + tanh(β(p̃i − η))

tanh(βη) + tanh(β(1− η))
(28)

Parameters such as β (projection sharpness) are gradually increased dur-
ing the optimization.

4.3. Objective function and constraints

4.3.1. Magnetic optimization (armature and core)

The objective function is defined as:
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Jmag(ρ) =
1

2

∫
Ωµ−1

r (ρ) |∇Az|2 , dΩ (29)

This formulation encourages the distribution of magnetic material (i.e.,
higher ρ) in regions where the magnetic vector potential Az has high gradi-
ents, thereby increasing magnetic energy. No thermal effects are considered
in this case.

4.3.2. Thermal optimization (core)

The thermal objective is to minimize the total thermal energy in the
domain, defined by:

Ut =
1

2

∫
V

κ(ρ)∇T · ∇T dV (30)

No magnetic effects are considered in this case.

4.3.3. Thermo-magnetic optimization (core)

In this multi-objective formulation, both magnetic and thermal behaviors
are considered simultaneously. The objective function is defined as a weighted
sum of the magnetic energy and thermal dissipation terms:

Jmulti(ρ) = ωJmag(ρ) + (1− ω)Jtherm(ρ) (31)

where ω ∈ [0, 1] is a weighting parameter that controls the trade-off be-
tween maximizing magnetic performance and minimizing heat dissipation.
The design variable ρ interpolates both magnetic permeability and thermal
conductivity as in the single-material models.

with ω ∈ [0, 1] balancing the magnetic and thermal effects.

4.3.4. Multimaterial thermomagnetic optimization

In the multimaterial case, three design variables (p1, p2, p3) are used to
interpolate both magnetic and thermal properties, allowing the optimizer to
select among multiple discrete material options (iron, air, coil, composite).

The objective function combines two competing goals: maximizing the
magnetic force on the armature and minimizing the thermal energy dissipa-
tion. The multi-objective function is defined as:

J (p1, p2, p3) = −αFela,x + βUt (32)
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The optimization is subject to a volume constraint:

V (p1, p2, p3)

V0

= f (33)

where f is the maximum allowed material fraction.

5. Numerical implementation

The numerical implementation of the topology optimization framework
for the solenoid design was carried out using the open-source finite element li-
brary FEniCS. The formulation of the problem was encoded in Python using
FEniCS’s high-level language, which enables efficient simulation of magneto-
static fields and material distribution in complex domains.

The sensitivity analysis required for optimization was performed using
the dolfin-adjoint library, which provides automatic differentiation capa-
bilities for FEniCS models. This allowed the efficient computation of the
gradient of the objective function with respect to the design variables, with-
out manual derivation of the adjoint equations.

The optimization itself was conducted using the TOBS (Topology Opti-
mization of Binary Structures) library, a discrete variable optimizer tailored
for problems involving material distribution. TOBS handles the binary na-
ture of topology optimization (material or void) and incorporates filtering
and projection techniques to ensure manufacturability and avoid numerical
instabilities such as checkerboarding.

A schematic flowchart of the optimization routine is presented in Fig-
ure ??, outlining the iterative process that involves solving the forward mag-
netostatic problem, computing sensitivities via adjoint analysis, updating the
material distribution, and checking convergence.

Convergence was monitored through the relative variation of the objective
function between iterations, as well as the stabilization of the material dis-
tribution field. The optimization process was terminated when both criteria
fell below predefined tolerances.

6. Results and discussion

This section presents the results obtained from the topology optimiza-
tion of the solenoid under different physical formulations. Each subsection
corresponds to a distinct optimization setup.
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6.1. Magnetic optimization – core and armature

This case considers only the magnetic behavior of the solenoid. The
optimization aims to concentrate magnetic material in regions that maximize
the magnetic force on the armature and/or the magnetic energy density.

Two optimized designs are presented: one focused on maximizing mag-
netic energy (Figure 1) and another focused on maximizing the magnetic
force acting on the armature (Figure 2).

Figure 1: Optimized topology for the magnetic energy formulation. High-density regions
concentrate around magnetic field gradients.
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Figure 2: Optimized topology for the magnetic force formulation. Material is redistributed
to maximize the force applied to the armature.

6.2. Thermal optimization – core only

In this scenario, the optimizer seeks to minimize thermal dissipation by
rearranging thermally conductive material. The heat is mainly generated
by Joule effect in the coil region. The optimized distribution is shown in
Figure 3.

Figure 3: Optimized thermal topology. Thermally conductive material is placed to effi-
ciently dissipate heat from critical regions.

6.3. Thermo-magnetic optimization – single material

In the coupled thermal and magnetic problem, a single design variable
is used to interpolate both magnetic permeability and thermal conductivity.
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The result, shown in Figure 4, balances thermal and magnetic performance
depending on the chosen weighting parameter ω.

Figure 4: Thermo-magnetic optimized topology (single material). The distribution reflects
a compromise between thermal dissipation and magnetic force.

6.4. Thermo-magnetic optimization – multimaterial selection

In the final case, the optimizer selects among discrete materials (air, iron,
coil, composite) using a multimaterial interpolation scheme. The resulting
topology (Figure 5) reflects both physical performance and material alloca-
tion efficiency.

Figure 5: Multimaterial thermo-magnetic optimized topology. The solver autonomously
assigns different materials to maximize performance.

7. Conclusions

References

11


	Introduction
	Magnetostatic formulation
	Thermal problem formulation
	Energy balance
	Fourier’s law
	Convective heat exchange
	Joule heating from electric current
	Final governing equation

	Design of magnetic actuators
	Material models
	Magnetic optimization (single-material)
	Thermal optimization (single-material)
	Thermo-magnetic optimization (single-material)
	Thermo-magnetic multimaterial optimization (discrete material selection)

	Filtering and projection
	Objective function and constraints
	Magnetic optimization (armature and core)
	Thermal optimization (core)
	Thermo-magnetic optimization (core)
	Multimaterial thermomagnetic optimization


	Numerical implementation
	Results and discussion
	Magnetic optimization – core and armature
	Thermal optimization – core only
	Thermo-magnetic optimization – single material
	Thermo-magnetic optimization – multimaterial selection

	Conclusions

